skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huston, L_Q"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The dynamic diamond anvil cell (dDAC) is a recently developed experimental platform that has shown promise for studying the behavior of materials at strain rates ranging from intermediate to quasi-static and shock compression regimes. Combining dDAC with time-resolved x-ray diffraction (XRD) in the radial geometry (i.e., with incident x-rays perpendicular to the axis of compression) enables the study of material properties such as strength, texture evolution, and deformation mechanisms. This work describes a radial XRD dDAC setup at beamline P02.2 (Extreme Conditions Beamline) at DESY’s PETRA III synchrotron. Time-resolved radial XRD data are collected for titanium, zirconium, and zircon samples, demonstrating the ability to study the strength and texture of materials at compression rates above 300 GPa/s. In addition, the simultaneous optical imaging of the DAC sample chamber is demonstrated. The ability to conduct simultaneous radial XRD and optical imaging provides the opportunity to characterize plastic strain and deviatoric strain rates in the DAC at intermediate rates, exploring the strength and deformation mechanisms of materials in this regime. 
    more » « less
  2. X-ray self-heating is a common by-product of X-ray Free Electron Laser (XFEL) techniques that can affect targets, optics, and other irradiated materials. Diagnosis of heating and induced changes in samples may be performed using the x-ray beam itself as a probe. However, the relationship between conditions created by and inferred from x-ray irradiation is unclear and may be highly dependent on the material system under consideration. Here, we report on a simple case study of a titanium foil irradiated, heated, and probed by a MHz XFEL pulse train at 18.1 keV delivered by the European XFEL using measured x-ray diffraction to determine temperature and finite element analysis to interpret the experimental data. We find a complex relationship between apparent temperatures and sample temperature distributions that must be accounted for to adequately interpret the data, including beam averaging effects, multivalued temperatures due to sample phase transitions, and jumps and gaps in the observable temperature near phase transformations. The results have implications for studies employing x-ray probing of systems with large temperature gradients, particularly where these gradients are produced by the beam itself. Finally, this study shows the potential complexity of studying nonlinear sample behavior, such as phase transformations, where biasing effects of temperature gradients can become paramount, precluding clear observation of true transformation conditions. 
    more » « less